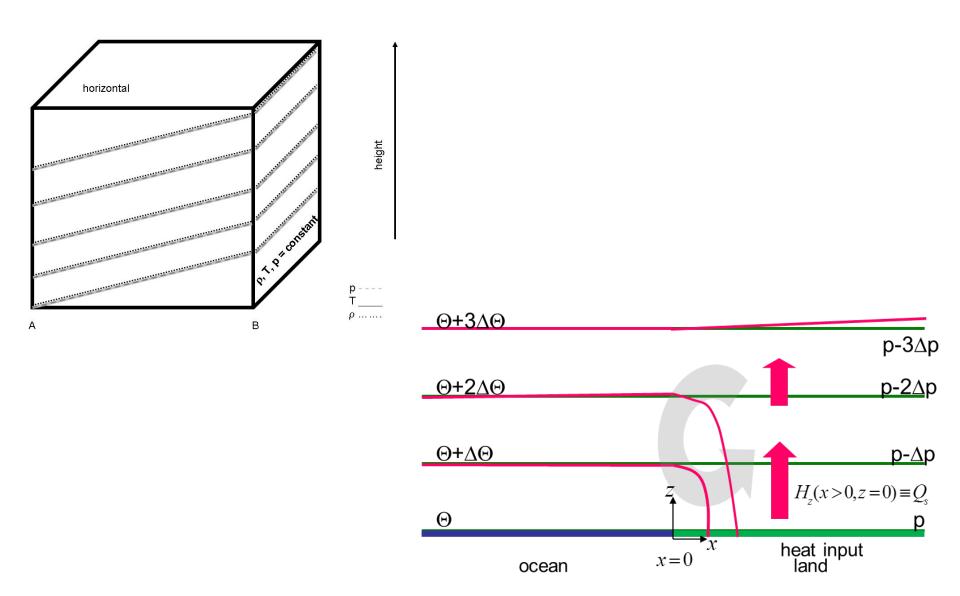
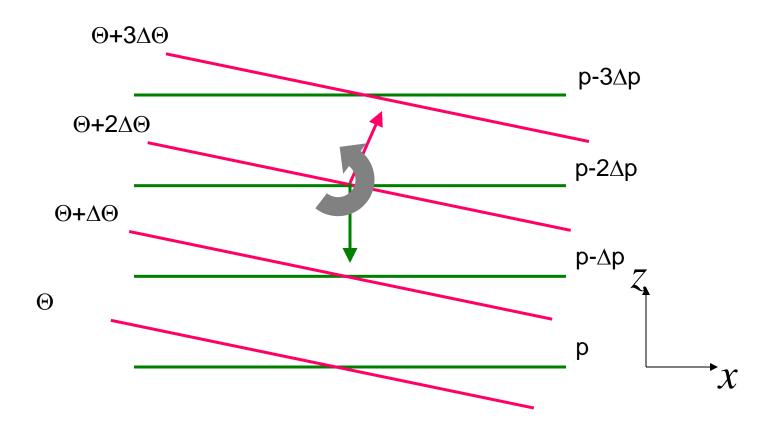
Unit 20

Thermal wind, advection, and primitive equations Nicole Mölders

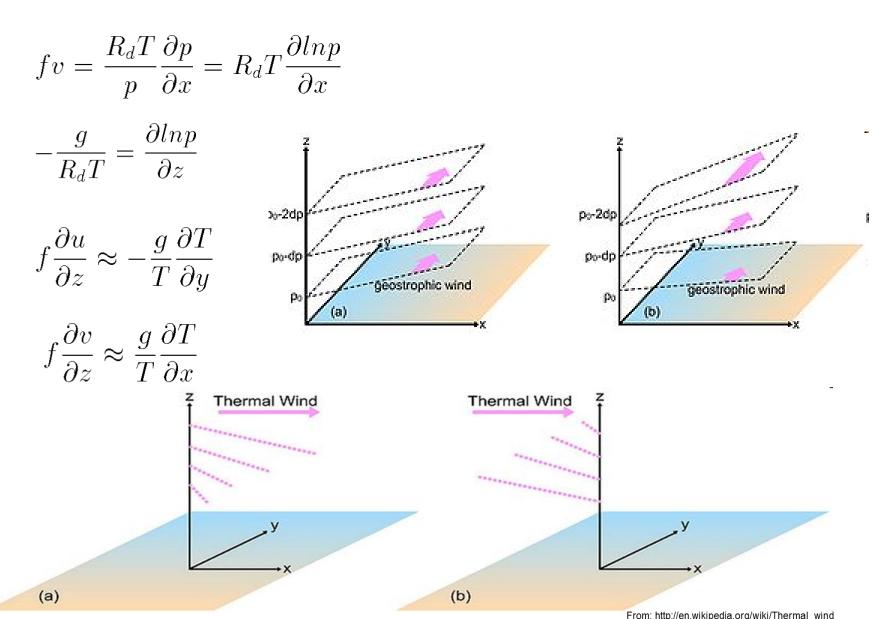
Barotrop vs. barocline

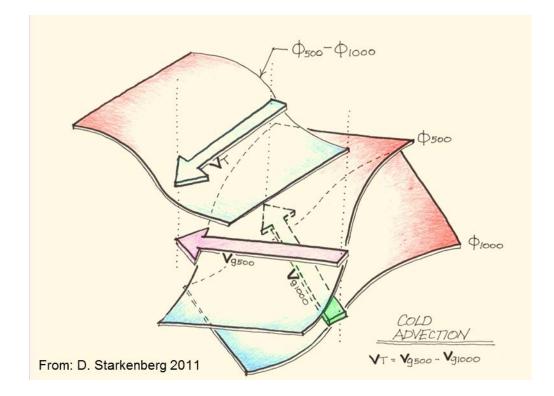


Baroclinicity creates vorticity

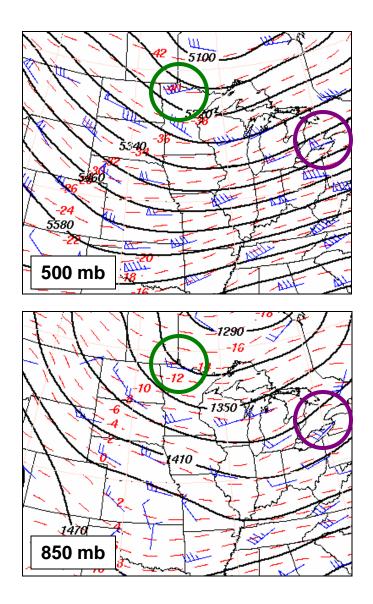


Thermal wind balance



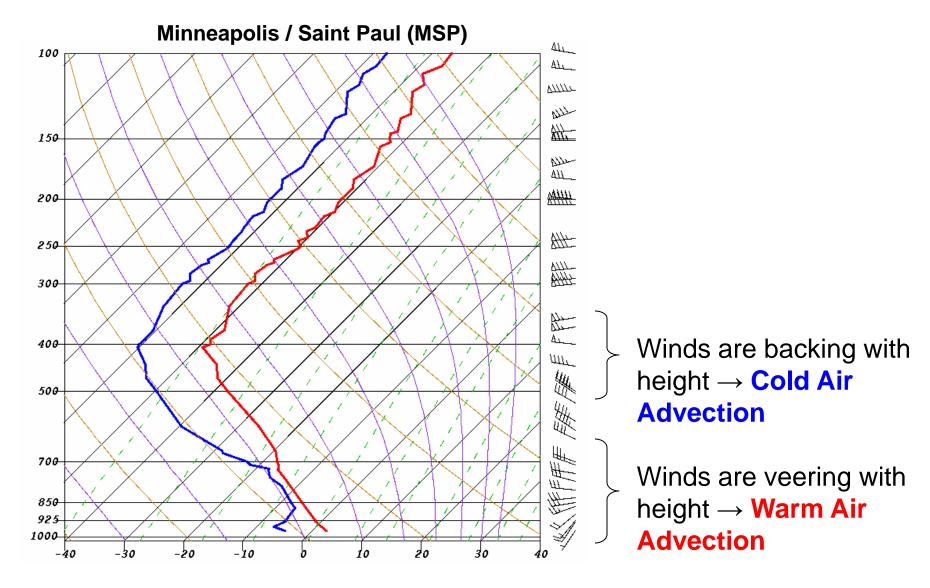


Thermal wind in synoptic application of pressure maps



International Falls, MN Buffalo, NY

Thermal wind in synoptic application of soundings

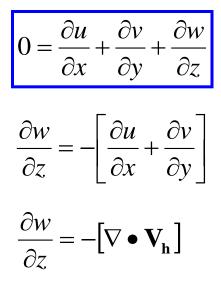


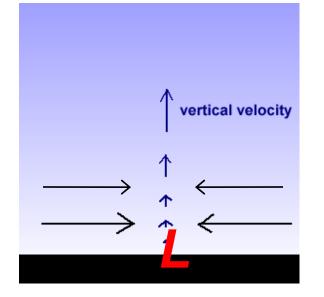
Continuity equation

$$\frac{1}{\rho}\frac{\partial\rho}{\partial t} = \frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z}$$

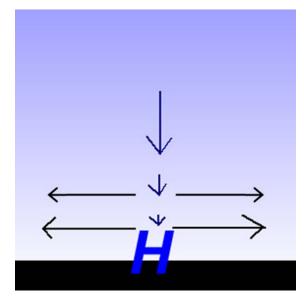
mass divergence form

$$-\frac{1}{\rho}\frac{D\rho}{Dt} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

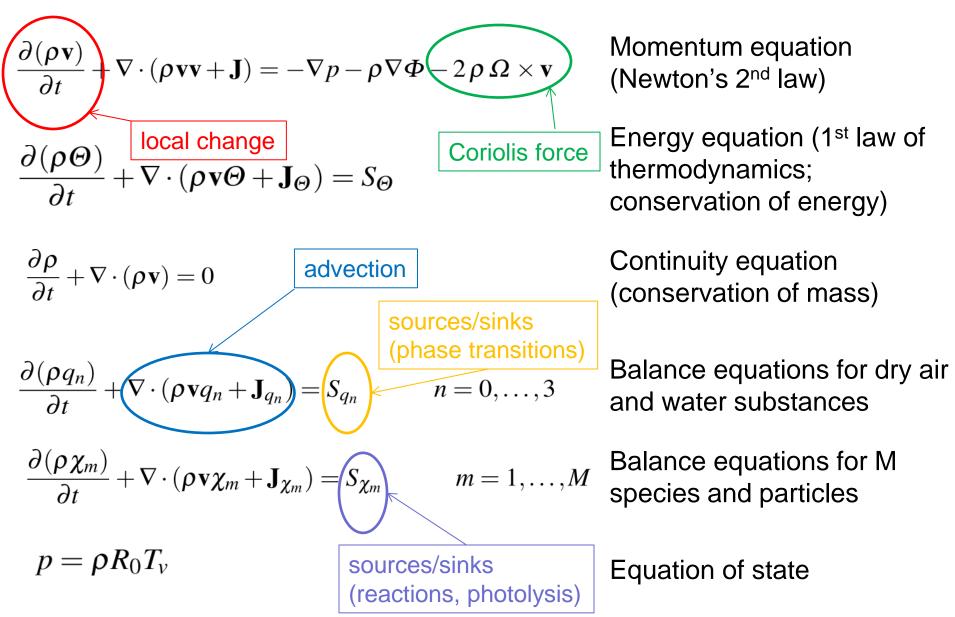




velocity divergence form

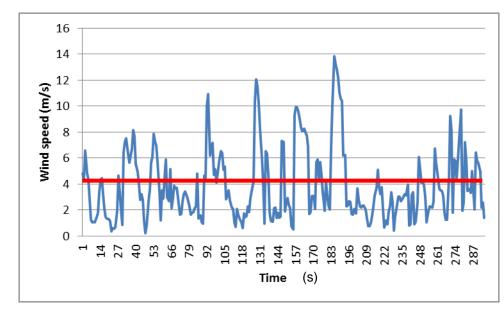


Primitive equations



Mean and perturbation plus Reynoldsaveraging

$$p = \overline{p} + p'$$
$$u = \overline{u} + u'$$
$$\rho = \overline{\rho} + \rho'$$



Mean and perturbation plus Reynoldsaveraging

$$\overline{\varphi + \gamma} = \overline{\varphi} + \overline{\gamma} \qquad \qquad \overline{\overline{\varphi}} = \overline{\varphi}$$
$$\overline{\varphi} = \overline{\varphi}$$
$$\overline{\varphi} = \overline{\varphi} = \overline{\varphi}$$
$$\overline{\varphi} = \overline{\varphi} = \overline{\varphi}$$

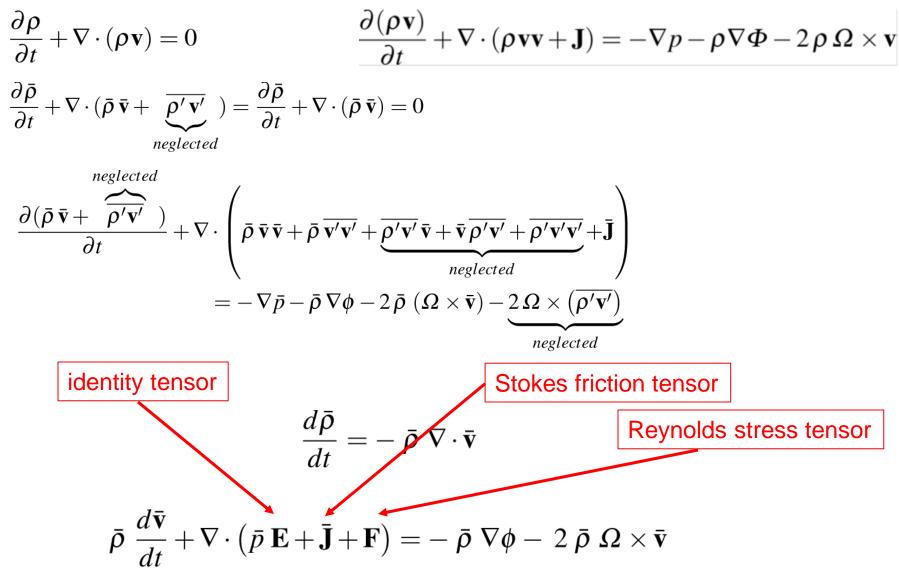
 $\overline{\alpha\varphi} = \alpha\overline{\varphi}$ with $\alpha = const.$

 $\overline{\nabla\cdot\varphi}=\nabla\cdot\overline{\varphi}$

$$\overline{\nabla\varphi} = \nabla\overline{\varphi}$$

 $\overline{\varphi'} = 0$

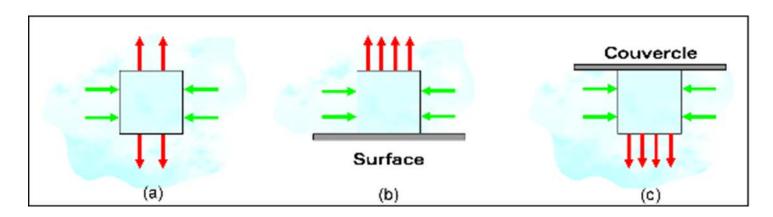
Example: Bousinesq approximation



Anelastic approximation

$$\frac{d\rho}{dt} = -\rho \nabla \mathbf{u} \quad \Rightarrow \quad \nabla \left(\rho_{ref} \mathbf{u} \right) = 0$$

ρ fully prognostic $\rightarrow \rho$ diagnostic (ideal gas law)



Closure problem – 1st order closure

$$\mathbf{F} = \bar{\boldsymbol{\rho}} \,\overline{\mathbf{v}' \,\mathbf{v}'} = -\bar{\boldsymbol{\rho}} \,\mathbf{K}_m : \left(\nabla \bar{\mathbf{v}} + (\nabla \bar{\mathbf{v}})^T\right)$$
$$\mathbf{H} = c_{p,0} \,\bar{\boldsymbol{\rho}} \,\overline{\mathbf{v}' \,\Theta'} = -c_{p,0} \,\bar{\boldsymbol{\rho}} \,\mathbf{K}_h \cdot \nabla \bar{\boldsymbol{\Theta}}$$
$$\mathbf{F}_{q_n} = \bar{\boldsymbol{\rho}} \,\overline{\mathbf{v}' \,q_{n'}} = -\bar{\boldsymbol{\rho}} \,\mathbf{K}_{q_n} \cdot \nabla \overline{q_n} \quad for \, n = 1, 2, 3$$

$$\mathbf{F}_{\boldsymbol{\chi}_m} = \bar{\boldsymbol{\rho}} \, \overline{\mathbf{v}' \, \boldsymbol{\chi}_m'} = - \, \bar{\boldsymbol{\rho}} \, \mathbf{K}_{\boldsymbol{\chi}_m} \cdot \nabla \overline{\boldsymbol{\chi}_m} \quad for \, m = 1, \dots, M \, .$$

References

- Utpal Manna, S. S. Sritharan (2007), Lyapunov Functionals and Local Dissipativity for the Vorticity Equation in Löp and Besov spaces, *Differential and Integral Equations*, **20**: 581-598.
- Barbu, V., S. S. Sritharan (2000) Accretive Quantization of the Vorticity Equation. In: A. V. Balakrishnan, Birkhauser (eds), Semi-groups of Operators: Theory and Applications, Boston, 296-303 http://www.nps.edu/Academics/Schools/GSEAS/SRI/BookCH12.pdf
- Cramer, M. S. *Navier-Stokes Equations Vorticity Transport Theorems: Introduction*". Foundations of Fluid Mechanics.
- www.nordita.org/~jpjmarti/.../Physics_of_Climate_Nordita_2009.ppt
- www.geoearth.uncc.edu/faculty/mdeastin/.../METR4245-dynamic-review.ppt